
Theory Underlying Retrievers
and Rankers

Mohamed Benaicha
mohamed.benaicha@hotmail.com
www.mohamedbenaicha.com

Steps

• Retrieval: retrieve top K recommendations
• Collaborative filtering: based on implicit assumptions or explicit user ratings

• Ranking: order top K recommendations
• Pointwise, pairwise and listwise approaches

0 1 0 1

0 0 1 1

1 1 0 0

2 3 1 1.3

-1 -0.2 3 -2

1.4 2 2.2 -1.6

3 1.5 -0.5

2 1 -1.3

-1.2 2 0.5

Book 1

Book 2

Book 3

User
1

User
2

User
3

User
4

Training (using implicit assumptions)

Book/User Rating Matric
(1/0-> implicit;

ratings -> explicit)

User embeddings = 3

Book embeddings = 3

0 1 0 1

0 0 1 1

1 1 0 0

Retrieval
Embeddings used in retrievers to represent

users/ book/ other features are
trainable weight matrices.

2 3 1 1.3

-1 -0.2 3 -2

1.4 2 2.2 -1.6

3 1.5 -0.5

2 1 -1.3

-1.2 2 0.5

Book 1

Book 2

Book 3

User
1

User
2

User
3

User
4

Training (using user ratings)

User embeddings = 3

Book embeddings = 3

0 3 0 2

0 0 5 4

4 4 0 0

3.8

1.18

-3.7

2

-1

1.4

3 1.5 -0.5

2 1 -1.3

-1.2 2 0.5

Book 1

Book 2

Book 3

User
1

Retrieve TopK = 2, i.e. top 2
books. Books 1 and 2

Retrieval

Ranking

Book 1 embeddings

Book 2 embeddings

Book 3 embeddings

Loss: Pointwise/Pairwise/ListWise
Metric: NDCG

Book 4 embeddings

Book 5 embeddings

Book 6 embeddings

Book 1 features embeddings

Book 2 features embeddings

Book 2 features embeddings

Book 4 features embeddings

Book 5 features embeddings

Book 6 features embeddings

User 1 embeddings

User 1 embeddings

User 2 embeddings

User 2 embeddings

User 2 embeddings

User 3 embeddings

User 1 features embeddings

User 1 features embeddings

User 2 features embeddings

User 2 features embeddings

User 2 features embeddings

User 3 features embeddings

Book 1 Rating

Book 2 Rating

Book 3 Rating

Book 4 Rating

Book 5 Rating

Book 6 Rating

Features Target

DNN Layers

Rating prediction

dim = 16 dim = 48 dim = 48dim = 16

Training

Ranking

Book 1 embeddings

Book 2 embeddings

Book 1 features embeddings

Book 2 features embeddings

User 1 embeddings

User 1 embeddings

User 1 features embeddings

User 1 features embeddings

Features Prediction

DNN Layers

Inference

2.8

3.25

From the retrieval model, we know User 1’s top 2 movies are movies 1,2; so we pass them into the ranker to get
rating predictions that are ranked, with book 2 being ranked first, then book 1:

Ranking
Ranking techniques: pointwise, pairwise, listwise

Pointwise (MSE loss): uses a simple feature-to-rating mapping and reduces MSE between predicted and actual rating –
loses context

(Book1, User1, other features) -> 4 -> learn feature weights of book 1 and user 1 to estimate accurately predict a 4
(Book2, User1, other features) -> 5 -> ““””” book2 “”””” a 5
(Book3, User2, other features) -> 3 …
(Book4, User2, other features) -> 2 …
(Book5, User2, other features) -> 4 …

Pairwise (hinge loss): uses a simple feature-to-rating mapping but pairs books per user (query) – captures some context

((Book1, Book2), User 1, , other features) -> P(Book1 rating > Book2 rating) = 0 -> learn feature weights of book 1, book2
and user 1 predict a proba of 0 for Book1, Book2 pairs given the user is User 1
((Book3, Book4), User2, other features) -> P(Book3 rating > Book4 rating | User 2) = 1 “””
((Book4, Book5), User2, , other features) -> P(Book4 rating > Book5 rating | User 2) = 0 “””

Ranking
Ranking techniques: pointwise, pairwise, listwise

Listwise ranking (List MLE): the authors of ListMLE claim ListMLE is a close representation of the actual loss function we
wish to minimize by maximizing the sum of m log-likelihoods of getting a prediction y(i) given inputs x(i) where g is a list of
book ratings (g1,g2,g3,g4, g5); the gradient descent algorithm for adjusting parameters (w, i.e. ϴ) doesn’t differ either

Listwise ranking data structure (for training; for inference, do not include ratings):
{

‘Users’:[User1,…,…], # shape = (n,) where n is batch size
‘Books’: [[‘Book1’, ‘Book2’, ‘Book3’, ‘Book4’, ‘Book5’],[..]…], # shape = (n,5)
‘Ratings’: [[2,5,3,2,5], [..],…], # shape = (n,5)

}

[sum(log(P(y[i]|x[i] ; g))) for i in range(0,m)]

Maximize through

gradient descent

Xia et al. (2008)

The NDCG metric used in the ranking model is:

1. A sum of discounted relevance

2. Where each element (r1…rk) comprising the sum is:

 (2g(r) – 1) / log(r + 1)

 g = score of book in position r,

 r = position in the list

3. The sum above is calculated for the ideal list and the current list being fed into the forward pass; to get
normalized DCG, the latter is divided by the former

 Normalized DCG = DCG / Ideal DCG

• Intuitively each term in DCG is a discounted relevance, i.e:

 [2score - 1 / log(position in list+1)]

• If properly ranked, the term is greater since it will have a greater numerator and a small denominator,
whereas the poorly ranked books should not contribute well to the DCG since the numerator would be
small with a large denominator

Ranking

