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Steps

• Retrieval: retrieve top K recommendations
• Collaborative filtering: based on implicit assumptions or explicit user ratings

• Ranking: order top K recommendations
• Pointwise, pairwise and listwise approaches
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Embeddings used in retrievers to represent 

users/ book/ other features are 
trainable weight matrices.
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Ranking

Book 1 embeddings
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Loss: Pointwise/Pairwise/ListWise
Metric: NDCG
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Ranking
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From the retrieval model, we know User 1’s top 2 movies  are movies 1,2; so we pass them into the ranker to get 
rating predictions that are ranked, with book 2 being ranked first, then book 1:



Ranking
Ranking techniques: pointwise, pairwise, listwise

Pointwise (MSE loss): uses a simple feature-to-rating mapping and reduces MSE between predicted and actual rating – 
loses context

(Book1, User1, other features) -> 4 -> learn feature weights of book 1 and user 1 to estimate accurately predict a 4
(Book2, User1, other features) -> 5 ->  ““””” book2 “”””” a 5
(Book3, User2, other features) -> 3 …
(Book4, User2, other features) -> 2 …
(Book5, User2, other features) -> 4 …

Pairwise (hinge loss): uses a simple feature-to-rating mapping but pairs books per user (query) – captures some context

((Book1, Book2), User 1, , other features) -> P(Book1 rating > Book2 rating) = 0 -> learn feature weights of book 1, book2 
and user 1 predict a proba of 0 for Book1, Book2 pairs given the user is User 1
((Book3, Book4), User2, other features) -> P(Book3 rating > Book4 rating | User 2) = 1 “””
((Book4, Book5), User2, , other features) -> P(Book4 rating > Book5 rating | User 2) = 0 “””



Ranking
Ranking techniques: pointwise, pairwise, listwise

Listwise ranking (List MLE): the authors of ListMLE claim ListMLE is a close representation of the actual loss function we 
wish to minimize by maximizing the sum of m log-likelihoods of getting a prediction y(i) given inputs x(i) where g is a list of 
book ratings (g1,g2,g3,g4, g5); the gradient descent algorithm for adjusting parameters (w, i.e. ϴ) doesn’t differ either

Listwise ranking data structure (for training; for inference, do not include ratings):
{

‘Users’:[User1,…,…], # shape = (n,) where n is batch size
‘Books’: [[‘Book1’, ‘Book2’, ‘Book3’, ‘Book4’, ‘Book5’],[..]…], # shape = (n,5)
‘Ratings’: [[2,5,3,2,5], [..],…], # shape = (n,5)

}

[sum(log(P(y[i]|x[i] ; g))) for i in range(0,m)]

Maximize through 

gradient descent

Xia et al. (2008)



The NDCG metric used in the ranking model is:

1. A sum of discounted relevance

2. Where each element (r1…rk) comprising the sum is:

  (2g(r) – 1) / log(r + 1)

 g = score of book in position r,

 r = position in the list

3. The sum above is calculated for the ideal list and the current list being fed into the forward pass; to get 
normalized DCG, the latter is divided by the former

 Normalized DCG = DCG / Ideal DCG

• Intuitively each term in DCG is a discounted relevance, i.e:

 [2score - 1 / log(position in list+1)]

• If properly ranked, the term is greater since it will have a greater numerator and a small denominator, 
whereas the poorly ranked books should not contribute well to the DCG since the numerator would be 
small with a large denominator

Ranking


