Theory Underlying Retrievers and Rankers

Mohamed Benaicha mohamed.benaicha@hotmail.com www.mohamedbenaicha.com

Steps

- Retrieval: retrieve top K recommendations
 - Collaborative filtering: based on implicit assumptions or explicit user ratings
- Ranking: order top K recommendations
 - Pointwise, pairwise and listwise approaches

Retrieval

Training (using implicit assumptions)

Embeddings used in retrievers to represent users/ book/ other features are trainable weight matrices.

User 1	User 2	User 3	User 4
2	3	1	1.3
-1	-0.2	3	-2
1.4	2	2.2	-1.6

User embeddings = 3

Book embeddings = 3

Book 1	3	1.5	-0.5
Book 2	2	1	-1.3
Book 3	-1.2	2	0.5

0	1	0	1
0	0	1	1
1	1	0	0

Book/User Rating Matric (1/0-> implicit; ratings -> explicit)

0	1	0	1
0	0	1	1
1	1	0	0

Training (using user ratings)

User 1	User 2	User 3	User 4
2	3	1	1.3
-1	-0.2	3	-2
1.4	2	2.2	-1.6

User embeddings = 3

Book embeddi	ngs = 3
--------------	---------

Book 1	3	1.5	-0.5
Book 2	2	1	-1.3
Book 3	-1.2	2	0.5

0	3	0	2
0	0	5	4
4	4	0	0

Retrieval

User 1 2 -1 1.4

Book 1	3	1.5	-0.5
Book 2	2	1	-1.3
Book 3	-1.2	2	0.5

3.8
1.18
-3.7

Retrieve TopK = 2, i.e. top 2 books. Books 1 and 2

Training

Ranking

Features

dim = 48dim = 16dim = 16dim = 48Book 1 features embeddings User 1 embeddings User 1 features embeddings Book 1 Rating Book 1 embeddings Book 2 features embeddings User 1 embeddings User 1 features embeddings Book 2 Rating Book 2 embeddings Book 2 features embeddings User 2 features embeddings User 2 embeddings Book 3 Rating Book 3 embeddings Book 4 embeddings User 2 embeddings Book 4 features embeddings User 2 features embeddings Book 4 Rating User 2 embeddings User 2 features embeddings Book 5 embeddings Book 5 features embeddings Book 5 Rating User 3 embeddings User 3 features embeddings Book 6 embeddings Book 6 features embeddings Book 6 Rating

DNN Layers

Rating prediction

Loss: Pointwise/Pairwise/ListWise

Target

Metric: NDCG

Inference

Ranking

From the retrieval model, we know User 1's top 2 movies are movies 1,2; so we pass them into the ranker to get rating predictions that are ranked, with **book 2 being ranked first, then book 1**:

Book 1 embeddings	Book 1 features embeddings	User 1 embeddings	User 1 features embeddings	2.8
Book 2 embeddings	Book 2 features embeddings	User 1 embeddings	User 1 features embeddings	3.25

→ Prediction

Features

DNN Layers

Ranking

Ranking techniques: pointwise, pairwise, listwise

Pointwise (MSE loss): uses a simple feature-to-rating mapping and reduces MSE between predicted and actual rating – loses context

```
(Book1, User1, other features) -> 4 -> learn feature weights of book 1 and user 1 to estimate accurately predict a 4 (Book2, User1, other features) -> 5 -> """"" book2 """"" a 5 (Book3, User2, other features) -> 3 ... (Book4, User2, other features) -> 2 ... (Book5, User2, other features) -> 4 ...
```

Pairwise (hinge loss): uses a simple feature-to-rating mapping but pairs books per user (query) – captures some context

```
((Book1, Book2), User 1, , other features) -> P(Book1 rating > Book2 rating) = 0 -> learn feature weights of book 1, book2 and user 1 predict a proba of 0 for Book1, Book2 pairs given the user is User 1 ((Book3, Book4), User2, other features) -> P(Book3 rating > Book4 rating | User 2) = 1 """ ((Book4, Book5), User2, , other features) -> P(Book4 rating > Book5 rating | User 2) = 0 """
```

Ranking

Ranking techniques: pointwise, pairwise, listwise

Listwise ranking (List MLE): the authors of ListMLE claim ListMLE is a close representation of the actual loss function we wish to minimize by maximizing the sum of m log-likelihoods of getting a prediction $y^{(i)}$ given inputs $x^{(i)}$ where g is a list of book ratings (g1,g2,g3,g4, g5); the gradient descent algorithm for adjusting parameters (w, i.e. θ) doesn't differ either

```
Algorithm 1 ListMLE Algorithm
[sum(log(P(y[i]|x[i]; g))) for i in range(0,m)]
                                                                                                 Input: training data\{(\mathbf{x}^{(1)}, \mathbf{y}^{(1)}), \dots, (\mathbf{x}^{(m)}, \overline{\mathbf{y}^{(m)}})\}
                                                                                                 Parameter: learning rate \eta, tolerance rate \epsilon
                                                                                                 Initialize parameter \omega
                                                                                                 repeat
                                                     Maximize through
                                                                                                    for i = 1 to m do
                                                                                                      Input (\mathbf{x}^{(i)}, \mathbf{y}^{(i)}) to Neural Network and compute
                                                     gradient descent
                                                                                                      gradient \triangle \omega with current \omega
                                                                                                      Update \omega = \omega - \eta \times \triangle \omega
                                                                                                    end for
                                                                                                    calculate likelihood loss on the training set
                                                                                                 until change of likelihood loss is below \epsilon
                                                                                                 Output: Neural Network model \omega
                                                                                                                 Xia et al. (2008)
```

Listwise ranking data structure (for training; for inference, do not include ratings):

```
{
'Users':[User1,...,...], # shape = (n,) where n is batch size
'Books': [['Book1', 'Book2', 'Book3', 'Book4', 'Book5'],[..]...], # shape = (n,5)
'Ratings': [[2,5,3,2,5], [...],...], # shape = (n,5)
}
```

Ranking

The NDCG metric used in the ranking model is:

- 1. A sum of discounted relevance
- 2. Where each element $(r_1...r_k)$ comprising the sum is:

$$(2^{g(r)}-1)/\log(r+1)$$

g = score of book in position r, r = position in the list

$$DCG_k = \sum_{r=1}^k \frac{rel_r}{\log(r+1)}$$

3. The sum above is calculated for the ideal list and the current list being fed into the forward pass; to get normalized DCG, the latter is divided by the former

Normalized DCG = DCG / Ideal DCG

• Intuitively each term in DCG is a discounted relevance, i.e:

 If properly ranked, the term is greater since it will have a greater numerator and a small denominator, whereas the poorly ranked books should not contribute well to the DCG since the numerator would be small with a large denominator

$$NDCG_n = \frac{DCG_n}{IDCG_n}$$